

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 385-388

Saucerneol B derivatives as human acyl-CoA: cholesterol acyltransferase inhibitors

Tae-Sook Jeong, a,† Kyung Soon Kim, Hana Yu, Mi Jeong Kim, Kyung-Hyun Cho, Yang-Kyu Choi, Hyoung-Chin Kim, Ho-Yong Park, and Woo Song Lee^{a,*}

^aKorea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea ^bInsect Biotech Co., Ltd., Daejeon 305-811, Korea

Received 24 August 2004; revised 20 October 2004; accepted 21 October 2004 Available online 11 November 2004

Abstract—A series of 2a–i were prepared from a lead compound, saucerneol B (1) for evaluating their acyl-CoA: cholesterol acyl-transferase inhibitory activities. Compounds 2a–g exhibited the high specificity of hACAT-1 than hACAT-2, whereas 2h and 2i showed very weak inhibitory activities in both hACAT-1 and hACAT-2. Saucerneol B (1) exhibited strong cholesterol-lowering effect in high cholesterol-fed mice.

© 2004 Elsevier Ltd. All rights reserved.

Inhibition of acyl-CoA: cholesterol acyltransferase (ACAT, E.C.2.3.1.26), the enzyme, which catalyzes the acylation of cholesterol to cholesteryl esters with longchain fatty acids, is a very attractive target for the treatment of hypercholesterolemia and atheroslerosis. 1 It was found to be present as two isoforms in mammals,² ACAT-1 and ACAT-2, with different tissue distribution and membrane topology.3 However, most ACAT inhibitors, which were screened by rat liver microsomal ACAT, have problems associated with low oral bioavailability and adrenal and/or hepatic toxicity in clinical trials.⁴ ACAT-1 plays a critical role in foam cell formation in macrophages, whereas ACAT-2 is in charge of the cholesterol absorption process in intestinal mucosal cells.⁵ These findings were consistent with the following results that atherosclerosis lesions were reduced at ACAT-1^{-/-} mice, whereas ACAT-2^{-/-} mice have limited cholesteryl absorption in the intestine, and decreased cholesterol ester content in the liver and plasma lipoproteins.6 Because ACAT inhibitors, most without selectivity for ACAT-1 versus ACAT-2, have not yet been identified that are effective in plasma cholesterol lowering in humans,7 the selective inhibitor of ACAT-1 or ACAT-2 may be effective for the develop-

ment of a useful hypercholesterolemic or anti-atherogenic agent.

So, we reported recently mass production of hACAT-1 and hACAT-2 individually from Hi5 cells to screen isoform-specific inhibitors. Also, we reported recently that the sesquineolignan, saucerneol B (1), were isolated from the methanolic extracts of *Saururus chinensis* root and exhibited the specificity of hACAT-1 than hACAT-2 with IC₅₀ values of 43.0 and 124.0 µM.9

In general, many ACAT inhibitors having an alkyl chain, such as CI-976 and FR129169, have been reported. It is considered that a long-chain aliphatic hydrocarbon moiety has structure similar to acyl residue of an acyl-CoA that is one of the substrates for ACAT. Therefore, alkyl chain of 1–9 carbons was introduced at position 7"-OH of saucerneol B (1) to develop more potent ACAT inhibitor. In this study, we describe in vitro human microsomal ACAT inhibitory activities for saucerneol B (1) and its *n*-alkoxy derivatives 2a-i, and also cholesterol-lowering effect of saucerneol B (1) in high cholesterol-fed mice.

n-Alkoxy derivatives **2a**-**i** of saucerneol B (**1**) were prepared according to the method shown in Scheme 1. Treatment of saucerneol B (**1**) with various alkyl halides containing alkyl chain of 1–9 carbons gave *O*-alkylated compounds **2a**-**i** at position 7"-OH of saucerneol B (**1**) in good yields. The structure of all compounds **2a**-**i**

Keyword: ACAT inhibitor.

^{*}Corresponding author. Tel.: +82 42 860 4278; fax: +82 42 861 2675; e-mail: wslee@kribb.re.kr

[†]Both authors contributed equally to the work.

Scheme 1. Reagents and conditions: (i) NaH (2.0 equiv), R–X (2.0 equiv, X = I, Br, Cl), DMF, 0 °C, reflux.

was determined by their spectroscopic data analysis. ¹¹ Also, the stereochemistry of saucerneol B (1) was elucidated by NOE experiments, namely, a NOE of 8.22% for the H-8 (or H-8') was observed upon irradiation of H-7 (H-7'), inversely, a NOE of 8.19% for the H-7 (or H-7') was showed. Therefore, a NOE correlation signals between H-7/H-8 (H-7'/H-8') and H-8/H-7 (H-8'/H-7') indicated the 7,8-cis-8,8'-cis-7',8'-cis configuration (Fig. 1).

The potential of compounds **2a–i** was evaluated as an inhibitor of hACAT-1 or -2 that was expressed and characterized from Hi5 cells by recombinant baculoviruses.⁸ Then, the rate of incorporation of [1-¹⁴C]-oleoyl-CoA into cholesteryl ester was determined using the expressed hACAT-1 or -2. The ACAT inhibitory activities of the compounds **2a–i** were confirmed by the positive control with oleic acid anilide, which inhibited hACAT-1 and hACAT-2 with IC₅₀ values of 0.14 and 0.17 μM, respectively.¹² The biological data for saucerneol B (1) and its *n*-alkoxy derivatives **2a–i** substi-

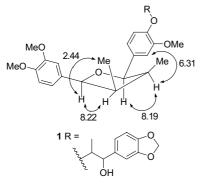


Figure 1. NOE experiments of saucerneol B (1).

Table 1. ACAT inhibitory activities of saucerneol B (1) and 2a-i

Compounds	R	Yield (%) ^a	hACAT-1, IC ₅₀ (μM) ^b	hACAT-2, inhibition % at 125 μM ^b
1	Н	_	43	57
2a	Me	76	35	45
2b	Et	65	31	29
2c	n-Pr	56	14	33
2d	n-Bu	61	17	28
2e	$n-C_5H_{11}$	60	20	33
2f	$n-C_6H_{13}$	53	34	33
2g	$n-C_7H_{15}$	63	50	26
2h	$n-C_8H_{17}$	73	44% at 125μM	19
2i	n-C ₉ H ₁₉	75	25% at $125\mu M$	10

^a Isolated yield.

tuted on the 7"-OH has been shown in Table 1. Compounds 2a and 2b introduced with methyl and ethyl residues at 7"-OH of 1, showed the increased inhibitory activities of hACAT-1 with IC₅₀ value of 35 µM for 2a and 31 µM for 2b, respectively. Compounds 2c and 2d, which had n-propyl and n-butyl residues at 7"-OH, exhibited more potent and optimized hACAT-1 inhibitory activities with IC₅₀ value of 14 µM for 2c and $17 \mu M$ for 2d compared to $43 \mu M$ for saucerneol B (1). However, the hACAT-2 inhibitory activities of 2a-d were decreased somewhat than saucerneol B (1). Compounds 2e-g containing alkyl chain of 5-7 carbons showed less potent inhibitory activities than 2c and 2d in hACAT-1 and the specificity of hACAT-1 over hA-CAT-2, whereas compounds 2h and 2i showed very weak inhibitory activities in both hACAT-1 and hA-CAT-2. In contrast to these results, manassantin A showed the specificity hACAT-2 (IC₅₀ = $8.0 \mu M$) over hACAT-1 ($IC_{50} = 39.0 \,\mu\text{M}$). Also, pyripyropene A inhibited only hACAT-2 with IC₅₀ values of 0.64 μM, whereas manassantin B dominantly inhibited hACAT-1 with IC_{50} values of $82.0\,\mu M.^{8.9}$ Therefore, human microsomal ACAT-1 and -2 enzymes have proven to be very sensitive to the property of the compounds. According to Rudel's results,⁵ topology orientation of African green monkey ACAT-1 and ACAT-2 in the membrane of the endoplasmic reticulum (ER) shows that serine residue is located on opposite sides of the membrane for either enzyme. This result means that functional differences between the enzymes may occur, even though the role of this serine in enzyme function is not yet known. Also, it may be not only influenced at the substrate binding site but also at lipophilicity of inhibitors that are through ER membrane. Therefore, these results may be rationalized that more specificity of compounds 2a-h against hACAT-1 may be due to the substrate binding effect between various alkyl chains on 7"-OH and enzyme.

For the development of a useful hypercholesterolemic or anti-atherogenic agent having ACAT inhibitory activity, we have examined firstly the preliminary cholesterollowering activity of saucerneol B (1) in high cholesterol-fed C59BL/6J mice. The plasma total cholesterol

^b In vitro ACAT inhibitory activity was measured using the expressed hACAT-1 or hACAT-2. Data are shown as mean values of two independent experiments performed in duplicate.

Table 2. The effect of saucerneol B (1) on plasma total cholesterols in high cholesterol-fed mice

Group	N	Body weight (g) ^a		Total cholesterol (mg/dL) ^b	
		0 day	6 weeks	0 day	6 weeks
Control	10	22.8 ± 0.9	28.6 ± 2.3	97.8 ± 11.1	238.0 ± 27.7
Saucerneol B (3.5 mg/kg diet)	10	22.8 ± 1.1	29.5 ± 1.5	$102.4 \pm 7.0^*$	$197.8 \pm 20.9^*$

^{*} Significantly different (p < 0.05) from control group.

levels were measured after feeding a high cholesterol diet supplemented with 3.5 mg/kg diet of saucerneol B (1) for six weeks. ¹³ Saucerneol B (1) exhibited strong cholesterol-lowering effect (-16.9%) in high cholesterol-fed mice (Table 2).

In conclusion, we have discovered a novel class of hA-CAT-1 specific enzyme inhibitors, its *n*-alkoxy derivatives **2a**—**h** of saucerneol B (1). Furthermore, process for mass production, cell-based fluorescence assay, and the efficacy test of cholesterol-lowering and anti-atherogenic activities of the derivatives **2a**—**f** will be the subject of future publications.

Acknowledgements

This work is supported by a grant (BioGreen 21 Project) from the Rural Development Administration, Korea.

References and notes

- Brown, M. S.; Dana, S. E.; Goldstein, J. L. J. Biol. Chem. 1975, 250, 4025.
- (a) Anderson, R. A.; Joyce, C.; Davis, M.; Reagan, J. W.; Clark, M.; Shelness, G. S.; Rudel, L. L. J. Biol. Chem. 1998, 273, 26747; (b) Coses, S.; Novak, S.; Zheng, Y.; Myers, H. M.; Lear, S. R.; Sande, E.; Welch, C. B.; Lusis, A. J.; Spancer, T. A.; Krouse, B. R.; Erickson, S. K., Jr.; Farese, R. V., Jr. J. Biol. Chem. 1998, 273, 26755.
- Joyce, C. W.; Shelness, G. S.; Davis, M. A.; Lee, R. G.; Skinner, K.; Anderson, R. A.; Rudel, L. L. Mol. Biol. Cell. 2000, 11, 3675.
- (a) Dominick, M. A.; McGuire, E. J.; Reindel, J. F.; Bobrowski, W. F.; Bocan, T. M.; Gough, A. W. Fundam. Appl. Toxicol. 1993, 20, 217; (b) Matsuo, M.; Hashimoto, M.; Suzuki, J.; Iwanami, K.; Tomoi, M.; Shimomura, K. Toxicol. Appl. Pharmacol. 1996, 140, 387.
- Rudel, L. L.; Lee, R. G.; Cockman, T. L. Curr. Opin. Lipidol. 2001, 12, 121.
- (a) Accad, M.; Smith, S. J.; Newland, D. L.; Sanan, D. A.; King, L. E., Jr.; Linton, M. F.; Fazio, S.; Farese, R. V., Jr. J. Clin. Invest. 2000, 105, 711; (b) Yagyu, H.; Kitamine, T.; Osuga, J.; Tozawa, R.; Chen, Z.; Kaji, Y.; Oka, T.; Perry, S.; Tamura, Y.; Ohashi, K.; Okazaki, H.; Yahagi, N.; Shionori, F.; Iizuka, Y.; Harada, K.; Shimano, H.; Yamashita, H.; Gotoda, T.; Yamada, N.; Ishibashi, S. J. Biol. Chem. 2000, 275, 21324; (c) Buhman, K. K.; Accad, M.; Novak, S.; Choi, R. S.; Wong, J. S.; Hamilton, R. L.; Turley, S.; Farese, R. V., Jr. Nat. Med. 2000, 6, 1341.
- Sliskovic, D. R.; Picard, J. A.; Krause, B. R. Prog. Med. Chem. 2002, 39, 121.

- Cho, K. H.; An, S.; Lee, W. S.; Paik, Y. K.; Kim, Y. K.; Jeong, T. S. Biochem. Biophys. Res. Commun. 2003, 309, 864.
- Lee, W. S.; Lee, D. W.; Baek, Y. I.; An, S. J.; Cho, K. H.; Choi, Y. K.; Kim, H. J.; Park, H. Y.; Bae, K. H.; Jeong, T. S. *Bioorg. Med. Chem. Lett.* 2004, 14, 3109.
- (a) Roth, B. D.; Blankley, C. J.; Hoefle, M. L.; Holmes, A.; Roark, W. H.; Trivedi, B. K.; Essenburg, A. D.; Kieft, K. A.; Krause, B. R.; Stanfield, R. L. J. Med. Chem. 1992, 35, 1609; (b) Sakuma, Y.; Hagihara, H.; Ohne, K.; Nagayoshi, A.; Mutoh, S.; Ito, Y.; Notsu, Y.; Okuhara, M. Jpn. J. Pharmacol. 1996, 70, 35.
- 11. Physical and spectroscopic data: **2c**: colorless oil, 1 H NMR (CDCl₃, 500 MHz): δ 0.68 (3H, d, J = 6.1 Hz), 0.69 (3H, d, J = 6.1 Hz), 0.87 (3H, t, J = 7.4 Hz), 1.08 (3H, d, J = 6.3 Hz), 2.24 (2H, m), 3.35 (2H, m), 3.85 (3H, s), 3.88 (3H, s), 3.89 (3H, s), 4.43 (1H, d, J = 6.1 Hz), 4.50 (1H, m), 5.40 (2H, d, J = 6.0 Hz), 5.95 (2H, s), 6.76–6.98 (9H, m); 13 C NMR (CDCl₃, 125 MHz): δ 10.7, 14.6, 14.7, 16.4, 23.1, 43.8, 55.9, 56.1, 71.0, 78.9, 83.7, 84.3, 100.9, 107.0, 107.8, 110.5, 110.6, 110.7, 116.2, 118.6, 119.4, 120.2, 131.9, 134.6, 135.6, 146.4, 147.1, 147.5, 148.5, 148.8, 150.1.
- 12. ACAT activity assay: microsomal fractions of Hi5 cells containing baculovirally expressed ACAT-1 or -2 were used as the sources of enzymes.8 The activity of the hACAT-1 and hACAT-2 was measured according to the method of Brecher and Chan¹⁴ with slight modification.¹⁵ The reaction mixture, containing $4\mu\bar{L}$ of microsomes (5μg/mL protein), 20μL of 0.5 M potassium-phosphate buffer (pH7.4, 10 mM dithiothreitol), 15 µL of bovine serum albumin (fatty acid free, 40 mg/mL), 2 µL of cholesterol in acetone (20 µg/mL, added last), 41 µL of water, and 10 µL of test sample in a total volume of 92 µL, was preincubated for 20min at 37°C. The reaction was initiated by the addition of $8\,\mu L$ of [1- ^{14}C]oleoyl-CoA solution (0.05 μCi, final concn 10 μM). After 25 min of incubation at 37°C, the reaction was stopped by the addition of 1.0 mL of isopropanol-heptane (4:1; v/v) solution. A mixture of 0.6mL of heptane and 0.4mL of 0.1 M potassium-phosphate buffer (pH7.4, 2mM dithiothreitol) was then added to the terminated reaction mixture. The above solution was mixed and allowed to phase separation under gravity for 2min. Cholesterol oleate was recovered in the upper heptane phase (total volume $0.9 \sim 1.0 \, \text{mL}$). The radioactivity in $100 \, \mu \text{L}$ of the upper phase was measured in scintillation vial with 3mL of scintillation cocktail (Lipoluma, Lumac Co.) using a liquid scintillation counter (1450 Microbeta Trilux Wallac Oy, Turku, Finland). Background values were obtained by preparing heat inactivated microsomes. The ACAT activity was expressed as a defined unit, cholesteryl oleate pmol/min/mg protein.
- 13. The hypocholesterolemic effect of saucerneol B (1) was investigated in male C57BL/6J mice maintained at Korea Research Institute of Bioscience and Biotechnology (Daejeon, Korea). The mice were housed in a room with controlled temperature (22 ± 2 °C), relative humidity

^a All values are expressed as mean ± SD.

^b Mean ± SD.

 $(55 \pm 5\%)$, and lighting (alternating 12h cycle of light and dark). At seven weeks of age, 20 male mice were randomly divided into two groups of 10 animals and fed on a high cholesterol diet (CRF-1 supplemented with 1.25% cholesterol, 6% fat, and 0.5% Na-cholate, Oriental Yeast Co. Ltd., Japan), the first group without supplementation (control), the second group supplemented with 3.5 mg/kg diet of saucerneol B (1). The diet and water were given ad libitum. After treating the test compounds for six weeks, the mice were anesthetized with ethyl ether, and the blood was obtained from the retro-orbital sinus using a heparinized capillary tube. Then, the blood was centrifuged at

8000g for $10\,\text{min}$, and the plasma was collected. The concentration of plasma total cholesterol was measured with an automatic blood chemical analyzer (Hitachi 7020, Japan). To evaluate statistical significance between control and experimental groups, student's t test was performed, and a p value of <0.05 was considered to be statistically significant.

- Brecher, P.; Chan, C. T. Biochem. Biophys. Acta 1980, 617, 458.
- Lee, C. H.; Jeong, T. S.; Choi, Y. K.; Hyun, B. W.; Oh, G. T.; Kim, E. H.; Kim, J. R.; Han, J. I.; Bok, S. H. *Biochem. Biophys. Res. Commun.* 2001, 284, 681.